Исследователи экспериментально подтвердили наличие в геноме коронавируса девяти из десяти ранее известных субгеномных РНК, а также обнаружили десятки неизвестных, образующихся на разных этапах жизненного цикла вируса в результате слияния и разложения.
Корейские микробиологи разобрались из чего состоит новый коронавирус, сообщает "Соцпортал". Оказалось, что геном SARS-CoV-2 содержит множество так называемых субгеномных РНК, функции которых не до конца понятны. Но многое ученым удалось выяснить. Результаты исследования опубликованы в журнале Cell.
Коронавирус SARS-CoV-2 относится к группе РНК-вирусов, довольно сложный геном которых зашифрован в очень длинной молекуле рибонуклеиновой кислоты (РНК). Проникая в клетки-хозяева, вирус реплицирует геномную РНК и создает множество более мелких, называемых субгеномными. Эти субгеномные РНК используются для синтеза различных белков, из которых строятся элементы новых вирусных частиц: шипов, оболочек, мембран.
Ученые надеются, что если они найдут способ подавить субгеномные РНК, то это нарушит жизненный цикл вируса в организме.
Исследователи экспериментально подтвердили наличие в геноме коронавируса девяти из десяти ранее известных субгеномных РНК (входящих в структуру вирусных частиц и транслирующихся в конкретные вирусные белки), а также обнаружили десятки неизвестных, образующихся на разных этапах жизненного цикла вируса в результате слияния и разложения. Кроме того, они выяснили, где именно находятся эти гены на геномной РНК.
"Это не просто детализация структуры SARS-CoV-2, — приводятся в пресс-релизе IBS слова профессора Ким Нарри. — Мы обнаружили многочисленные новые РНК и множественные неизвестные химические модификации вирусных РНК, говорит профессоров Ким Нарри".
Авторы предполагают, что модифицированные в ходе жизненного цикла РНК могут получить новые свойства, отличающие их от немодифицированных, даже если они несут одинаковую генетическую информацию.
"Хотя требуется дальнейшее изучение, уже можно сказать, что подобные молекулярные события могут привести к относительно быстрой эволюции коронавируса. Более того, мы находим множество неизвестных химических модификаций вирусных РНК. Пока неясно, что делают эти модификации, но возможно, что они помогают вирусу избежать атаки со стороны клетки-хозяина", — говорится в исследовании.
Успех корейских микробиологов основан на применении двух дополнительных методов: секвенирования кольцевых молекул ДНК (наноболов) и прямого нанопорового секвенирования РНК.